Close Menu
  • Graphic cards
  • Laptops
  • Monitors
  • Motherboard
  • Processors
  • Smartphones
  • Smartwatches
  • Solid state drives
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Dutchieetech
Subscribe Now
  • Graphic cards
  • Laptops
  • Monitors
  • Motherboard
  • Processors
  • Smartphones
  • Smartwatches
  • Solid state drives
Dutchieetech
Monitors

A high-performance speech neuroprosthesis | Nature

dutchieetech.comBy dutchieetech.com23 August 2023No Comments5 Mins Read

  • Herff, C. et al. Brain-to-text: decoding spoken phrases from phone representations in the brain. Front. Neurosci. 9217 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385217–227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of spoken sentences. Nature 568493–498 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Herff, C. et al. Generating natural, intelligible speech from brain activity in motor, premotor, and inferior frontal cortices. Front. Neurosci. 131267 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Kellis, S. et al. Decoding spoken words using local field potentials recorded from the cortical surface. J. Neural Eng. 7056007 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Pei, X., Barbour, D. L., Leuthardt, E. C. & Schalk, G. Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. J. Neural Eng. 8046028 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Mugler, E. M. et al. Direct classification of all American English phonemes using signals from functional speech motor cortex. J. Neural Eng. 11035015 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593249–254 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Yuan, J., Liberman, M. & Cieri, C. Towards an integrated understanding of speaking rate in conversation. In 9th Intl Conf. on Spoken Language Processing https://doi.org/10.21437/Interspeech.2006-204 (2006).

  • Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536171–178 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Broca, P. New case of aphemia produced by a lesion of the third frontal convolution. Bull. Soc. Anat. 2398–407 (1861).

    Google Scholar

  • Friederici, A. D. & Gierhan, S. M. The language network. Curr. Opin. Neurobiol. 23250–254 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar

  • Ardila, A., Bernal, B. & Rosselli, M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch. Clin. Neuropsychol. 31112–122 (2016).

    Article 
    PubMed 

    Google Scholar

  • Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 891187–1193 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E. & Duffau, H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 1372773–2782 (2014).

    Article 
    PubMed 

    Google Scholar

  • Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Know USA 1122871–2875 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Gajardo-Vidal, A. et al. Damage to Broca’s area does not contribute to long-term speech production outcome after stroke. Brain 144817–832 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Andrews, J. P. et al. Dissociation of Broca’s area from Broca’s aphasia in patients undergoing neurosurgical resections. J. Neurosurg. 138847–857 (2022).

    Article 
    PubMed 

    Google Scholar

  • Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495327–332 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Godfrey, J. J., Holliman, E. C. & McDaniel, J. SWITCHBOARD: telephone speech corpus for research and development. In IEEE Intl Conf. on Acoustics, Speech, and Signal Processing https://doi.org/10.1109/ICASSP.1992.225858 (IEEE, 1992).

  • Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 2982–97 (2012).

    Article 
    ADS 

    Google Scholar

  • Graves, A., Mohamed, A. & Hinton, G. Speech recognition with deep recurrent neural networks. In 2013 IEEE Intl Conf. on Acoustics, Speech and Signal Processing https://doi.org/10.1109/ICASSP.2013.6638947 (IEEE, 2013).

  • Xiong, W. et al. The Microsoft 2017 Conversational Speech Recognition System. In 2018 IEEE Intl Conf. on Acoustics, Speech and Signal Processing (ICASSP) https://doi.org/10.1109/ICASSP.2018.8461870 (IEEE, 2018).

  • Dyer, E. L. et al. A cryptography-based approach for movement decoding. Nat. Biomed. Eng. 1967–976 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Farshchian, A. et al. Adversarial domain adaptation for stable brain-machine interfaces. Preprint at https://doi.org/10.48550/arXiv.1810.00045 (2019).

  • Degenhart, A. D. et al. Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-0542-9 (2020).

  • Karpowicz, B. M. et al. Stabilizing brain-computer interfaces through alignment of latent dynamics. Preprint at bioRxiv https://doi.org/10.1101/2022.04.06.487388 (2022).

  • Pels, E. G. M., Aarnoutse, E. J., Ramsey, N. F. & Vansteensel, M. J. Estimated prevalence of the target population for brain-computer interface neurotechnology in the Netherlands. Neurorehabil. Neural Repair 31677–685 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 6e18554 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Räihä, K.-J. & Ovaska, S. An exploratory study of eye typing fundamentals: dwell time, text entry rate, errors, and workload. In Proc. SIGCHI Conf. on Human Factors in Computing Systems https://doi.org/10.1145/2207676.2208711 (Association for Computing Machinery, 2012).

  • Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making brain–machine interfaces robust to future neural variability. Nat. Common. 713749 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Nurmikko, A. Challenges for large-scale cortical interfaces. Neuron 108259–269 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar

  • Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 231522–1536 (2020).

    Article 
    PubMed 

    Google Scholar

  • Rubin, D. B. et al. Interim safety profile from the feasibility study of the BrainGate neural interface system. Neurology 100e1177–e1192 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Musk, E. & Neuralink An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21e16194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Sahasrabuddhe, K. et al. The Argo: a high channel count recording system for neural recording in vivo. J. Neural Eng. https://doi.org/10.1088/1741-2552/abd0ce (2020).

    Article 

    Google Scholar

  • He, Y. et al. Streaming end-to-end speech recognition for mobile devices. In ICASSP 2019 – 2019 IEEE Intl Conf. on Acoustics, Speech and Signal Processing (ICASSP) https://doi.org/10.1109/ICASSP.2019.8682336 (IEEE, 2019).

  • Aiello, A. A Phonetic Examination of California (UCSC Linguistics Research Center, 2010).

  • Source link

    dutchieetech.com
    • Website

    Related Posts

    Can Christians Embrace AI? | Can Christians Embrace AI?

    21 June 2024

    The 5 Finest Screens For PS5 – Spring 2024: Opinions

    21 June 2024

    Larger earners face better AI publicity, research finds

    21 June 2024

    Black Display at Boot on Home windows? Here is Find out how to Repair It

    6 June 2024

    [SOLVED] Monitor randomly goes black (2024)

    6 June 2024

    The most effective OLED pc displays in 2024 deliver eye-popping colour and accuracy

    4 June 2024
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Legal Pages
    • Disclaimer
    • Privacy Policy
    • About Us
    • Contact Us

    Type above and press Enter to search. Press Esc to cancel.