Close Menu
  • Graphic cards
  • Laptops
  • Monitors
  • Motherboard
  • Processors
  • Smartphones
  • Smartwatches
  • Solid state drives
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Dutchieetech
Subscribe Now
  • Graphic cards
  • Laptops
  • Monitors
  • Motherboard
  • Processors
  • Smartphones
  • Smartwatches
  • Solid state drives
Dutchieetech
Monitors

Mind-computer interface for robotic management with eye artifacts for assistive functions

dutchieetech.comBy dutchieetech.com16 October 2023No Comments7 Mins Read

  • Vicentini, F., Pedrocchi, N., Beschi, M., Giussani, M., Iannacci, N., Magnoni, P., Pellegrinelli, S., Roveda, L., Villagrossi, E., Askarpour, M., et al. Piros: Cooperative, protected and reconfigurable robotic companion for cnc pallets load/unload stations. Bringing modern robotic applied sciences from analysis labs to industrial end-users: the expertise of the ecu robotics challenges57–96 (2020)

  • Fong , T. , Rochlis Zumbado , J. , Currie , N. , Mishkin , A. & Akin , DL Area telerobotics: Distinctive challenges to human-robot collaboration in house . Rev. Hum. Elements Ergon. 9(1), 6–56 (2013).

    Article 

    Google Scholar

  • Schaefer, Ok. E. et al. Relinquishing handbook management: Collaboration requires the potential to grasp robotic intent. In 2016 Worldwide Convention on Collaboration Applied sciences and Methods (CTS) (ed. Schaefer, Ok. E.) 359–366 (IEEE, 2016).

    Chapter 

    Google Scholar

  • Wong, C. J., Tay, Y. L., Wang, R. & Wu, Y. Human-robot partnership: A research on collaborative storytelling. In 2016 eleventh ACM/IEEE Worldwide Convention on Human-Robotic Interplay (HRI) (ed. Wong, C. J.) 535–536 (IEEE, 2016).

    Chapter 

    Google Scholar

  • Dalla Gasperina, S., Roveda, L., Pedrocchi, A., Braghin, F. & Gandolla, M. Overview on patient-cooperative management methods for upper-limb rehabilitation exoskeletons. Entrance. Robotic. AI 8745018 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Kaplan, Ok. E., Nichols, Ok. A. & Okamura, A. M. Towards human-robot collaboration in surgical procedure: Efficiency evaluation of human and robotic brokers in an inclusion segmentation job. In 2016 IEEE Worldwide Convention on Robotics and Automation (ICRA) (ed. Kaplan, Ok. E.) 723–729 (IEEE, 2016).

    Chapter 

    Google Scholar

  • Mohebbi, A. Human-robot interplay in rehabilitation and help: A assessment. Curr. Robotic. Rep. 1(3), 131–144 (2020).

    Article 

    Google Scholar

  • Postelnicu, C.-C., Talaba, D. & Toma, M.-I. Controlling a robotic arm by brainwaves and eye motion. In Doctoral Convention on Computing, Electrical and Industrial Methods (ed. Postelnicu, C.-C.) 157–164 (Springer, 2011).

    Google Scholar

  • Sharma, Ok., Jain, N. & Pal, P. Ok. Detection of eye closing/opening from eog and its software in robotic arm management. Biocybern. Biomed. Eng. 40(1), 173–186 (2020).

    Article 

    Google Scholar

  • Daly, J. J. & Wolpaw, J. R. Mind-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008).

    Article 
    PubMed 

    Google Scholar

  • Li, H. et al. Combining movement-related cortical potentials and event-related desynchronization to review motion preparation and execution. Entrance. Neurol. 9822 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Noureddin, B., Lawrence, P. D. & Birch, G. E. On-line removing of eye motion and blink eeg artifacts utilizing a high-speed eye tracker. IEEE Trans. Biomed. Eng. 59(8), 2103–2110 (2011).

    Article 
    PubMed 

    Google Scholar

  • Belkacem, AN et al. Actual-time management of a online game utilizing eye actions and two temporal eeg sensors. Account Intel. Neuroscientists 20151 (2015).

    Article 

    Google Scholar

  • Millan, J. d. R. , Renkens , F. , Mouriño , J. & Gerstner , W. Non-invasive brain-actuated management of a cell robotic . In: Proceedings of the 18th Worldwide Joint Convention on Synthetic Intelligence (2003).

  • Rebsamen, B. et al. A mind managed wheelchair to navigate in acquainted environments. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 590–598 (2010).

    Article 
    PubMed 

    Google Scholar

  • Ma, T et al. The hybrid bci system for motion management by combining motor imagery and transferring onset visible evoked potential. J. Neural Eng. 14(2), 026015 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar

  • Li, Y., Pan, J., Wang, F. & Yu, Z. A hybrid bci system combining p300 and ssvep and its software to wheelchair management. IEEE Trans. Biomed. Eng. 60(11), 3156–3166 (2013).

    Article 
    PubMed 

    Google Scholar

  • Hori, J., Sakano, Ok. & Saitoh, Y. Growth of a communication help system managed by eye actions and voluntary eye blink. IEICE Trans. Inf. Syst. 89(6), 1790–1797 (2006).

    Article 

    Google Scholar

  • Duguleana , M. & Mogan , G. Utilizing eye blinking for eog-based robotic management . In Doctoral Convention on Computing, Electrical and Industrial Methods (eds Black, M. & Mogan, G.) 343–350 (Springer, 2010).

    Google Scholar

  • Chambayil, B., Singla, R. & Jha, R. Eeg eye blink classification utilizing neural community. Proc. World Congress Eng. 12–5 (2010).

    Google Scholar

  • Rihana, S., Damien, P. & Moujaess, T. Eeg-eye blink detection system for mind pc interface. In Converging Medical and Engineering Analysis on Neurorehabilitation (eds Rihana, S. et al.) 603–608 (Springer, 2013).

    Chapter 

    Google Scholar

  • Janapati, R., Dalal, V., Govardhan, N. & Gupta, R. S. Overview on eeg-bci classification strategies developments. In IOP Convention Sequence: Supplies Science and Engineering Vol. 981 (ed. Janapati, R.) 032019 (IOP Publishing, 2020).

    Google Scholar

  • Morshed, B. I. & Khan, A. A short assessment of mind sign monitoring applied sciences for bci functions: Challenges and prospects. J. Bioeng. Biomed. Sci. 4(1), 1 (2014).

    Article 

    Google Scholar

  • Rashid, M. et al. Present standing, challenges, and potential options of eeg-based brain-computer interface: a complete assessment. Entrance. Neurorobot. 251–35 (2020).

  • Ferguson, S. Temporal Lobe Epilepsy and the Thoughts-Mind Relationship: A New Perspective. 1–133 (Elsevier, 2006).

    Google Scholar

  • Holm, A., Lukander, Ok., Korpela, J., Sallinen, M. & Müller, KM Estimating mind load from the eeg. TheScientificWorldJOURNAL 9639–651 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar

  • Stuss, D. T. & Knight, R. T. Ideas of Frontal Lobe Operate. 1–765 (Oxford College Press, 2013).

    Google Scholar

  • Onton, J., Delorme, A. & Makeig, S. Frontal midline eeg dynamics throughout working reminiscence. Neuroimage 27(2), 341–356 (2005).

    Article 
    PubMed 

    Google Scholar

  • Chi, Y. M., Jung, T.-P. & Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological assessment. IEEE Rev. Biomed. Eng. 3106–119 (2010).

    Article 
    PubMed 

    Google Scholar

  • Usakli, A. B. Enchancment of eeg sign acquisition: {An electrical} facet for state-of-the-art of entrance finish. Computational intelligence and neuroscience 20101–7 (2010).

  • Sovierzoski, M. A., Argoud, F. I. & de Azevedo, F. M. Figuring out eye blinks in eeg sign evaluation. In 2008 Worldwide Convention on Info Know-how and Purposes in Biomedicine (ed. Sovierzoski, M. A.) 406–409 (IEEE, 2008).

    Chapter 

    Google Scholar

  • Gupta, S. S. et al. Detecting eye actions in eeg for controlling units. In 2012 IEEE Worldwide Convention on Computational Intelligence and Cybernetics (CyberneticsCom) (ed. Gupta, S. S.) 69–73 (IEEE, 2012).

    Chapter 

    Google Scholar

  • Roy, R. N., Charbonnier, S. & Bonnet, S. Eye blink characterization from frontal eeg electrodes utilizing supply separation and sample recognition algorithms. Biomed. Sign Course of. Management 14256–264 (2014).

    Article 

    Google Scholar

  • Abo-Zahhad, M., Ahmed, S. M. & Abbas, S. N. A brand new eeg acquisition protocol for biometric identification utilizing eye blinking indicators. Int. J. Intell. Syst. Appl. 7(6), 48 (2015).

    Google Scholar

  • Korovesis, N., Kandris, D., Koulouras, G. & Alexandridis, A. Robotic movement management through an eeg-based brain-computer interface by utilizing neural networks and alpha brainwaves. Electronics 8(12), 1387 (2019).

    Article 

    Google Scholar

  • Manoilov, P. Eeg eye-blinking artefacts energy spectrum evaluation. In: Proc. Int. Conf. Comput. Syst. TechnolVol. 52, pp. 3–5 (2006).

  • Kong, W. et al. Computerized and direct identification of blink elements from scalp eeg. Sensors 13(8), 10783–10801 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar

  • Haak, M., Bos, S., Panic, S. & Rothkrantz, L. J. Detecting stress utilizing eye blinks and mind exercise from eeg indicators. Proc. 1st Driver Automobile Interplay Interface (DCII 2008) 3135–60 (2009).

  • Tran, D.-Ok., Nguyen, T.-H. & Nguyen, T.-N. Detection of eeg-based eye-blinks utilizing a thresholding algorithm. Eur. J.Eng. Technol. Res. 6(4), 6–12 (2021).

    Article 

    Google Scholar

  • Joyce, C. A., Gorodnitsky, I. F. & Kutas, M. Computerized removing of eye motion and blink artifacts from eeg knowledge utilizing blind part separation. Psychophysiology 41(2), 313–325 (2004).

    Article 
    PubMed 

    Google Scholar

  • Stephygraph, L. R., Arunkumar, N. & Venkatraman, V. Wi-fi cell robotic management via human machine interface utilizing mind indicators. In 2015 Worldwide Convention on Good Applied sciences and Administration for Computing, Communication, Controls, Vitality and Supplies (ICSTM) (ed. Stephygraph, L. R.) 596–603 (IEEE, 2015).

    Chapter 

    Google Scholar

  • Cao, J. et al. Unsupervised eye blink artifact detection from eeg with gaussian combination mannequin. IEEE J. Biomed. Well being Inform. 25(8), 2895–2905 (2021).

    Article 
    PubMed 

    Google Scholar

  • b Abd Rani, M. S., et al. Detection of eye blinks from eeg indicators for house lighting system activation. In: 2009 sixth Worldwide Symposium on Mechatronics and Its Purposes, pp. 1–4 (2009). IEEE

  • Iwasaki, M. et al. Results of eyelid closure, blinks, and eye actions on the electroencephalogram. Clin. Neurophysiol. 116(4), 878–885 (2005).

    Article 
    PubMed 

    Google Scholar

  • Agarwal, M. & Sivakumar, R. Blink: A completely automated unsupervised algorithm for eye-blink detection in eeg indicators. In 2019 57th Annual Allerton Convention on Communication, Management, and Computing (Allerton) (eds Agarwal, M. & Sivakumar, R.) 1113–1121 (IEEE, 2019).

    Chapter 

    Google Scholar

  • Franceschi, P., Bertini, F., Braghin, F., Roveda, L., Pedrocchi, N. & Beschi, M. Predicting human movement intention for first assistive management. arXiv preprint arXiv:2307.10743 (2023).

  • Source link

    dutchieetech.com
    • Website

    Related Posts

    Can Christians Embrace AI? | Can Christians Embrace AI?

    21 June 2024

    The 5 Finest Screens For PS5 – Spring 2024: Opinions

    21 June 2024

    Larger earners face better AI publicity, research finds

    21 June 2024

    Black Display at Boot on Home windows? Here is Find out how to Repair It

    6 June 2024

    [SOLVED] Monitor randomly goes black (2024)

    6 June 2024

    The most effective OLED pc displays in 2024 deliver eye-popping colour and accuracy

    4 June 2024
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Legal Pages
    • Disclaimer
    • Privacy Policy
    • About Us
    • Contact Us

    Type above and press Enter to search. Press Esc to cancel.