Vicentini, F., Pedrocchi, N., Beschi, M., Giussani, M., Iannacci, N., Magnoni, P., Pellegrinelli, S., Roveda, L., Villagrossi, E., Askarpour, M., et al. Piros: Cooperative, protected and reconfigurable robotic companion for cnc pallets load/unload stations. Bringing modern robotic applied sciences from analysis labs to industrial end-users: the expertise of the ecu robotics challenges57–96 (2020)
Fong , T. , Rochlis Zumbado , J. , Currie , N. , Mishkin , A. & Akin , DL Area telerobotics: Distinctive challenges to human-robot collaboration in house . Rev. Hum. Elements Ergon. 9(1), 6–56 (2013).
Google Scholar
Schaefer, Ok. E. et al. Relinquishing handbook management: Collaboration requires the potential to grasp robotic intent. In 2016 Worldwide Convention on Collaboration Applied sciences and Methods (CTS) (ed. Schaefer, Ok. E.) 359–366 (IEEE, 2016).
Google Scholar
Wong, C. J., Tay, Y. L., Wang, R. & Wu, Y. Human-robot partnership: A research on collaborative storytelling. In 2016 eleventh ACM/IEEE Worldwide Convention on Human-Robotic Interplay (HRI) (ed. Wong, C. J.) 535–536 (IEEE, 2016).
Google Scholar
Dalla Gasperina, S., Roveda, L., Pedrocchi, A., Braghin, F. & Gandolla, M. Overview on patient-cooperative management methods for upper-limb rehabilitation exoskeletons. Entrance. Robotic. AI 8745018 (2021).
Google Scholar
Kaplan, Ok. E., Nichols, Ok. A. & Okamura, A. M. Towards human-robot collaboration in surgical procedure: Efficiency evaluation of human and robotic brokers in an inclusion segmentation job. In 2016 IEEE Worldwide Convention on Robotics and Automation (ICRA) (ed. Kaplan, Ok. E.) 723–729 (IEEE, 2016).
Google Scholar
Mohebbi, A. Human-robot interplay in rehabilitation and help: A assessment. Curr. Robotic. Rep. 1(3), 131–144 (2020).
Google Scholar
Postelnicu, C.-C., Talaba, D. & Toma, M.-I. Controlling a robotic arm by brainwaves and eye motion. In Doctoral Convention on Computing, Electrical and Industrial Methods (ed. Postelnicu, C.-C.) 157–164 (Springer, 2011).
Google Scholar
Sharma, Ok., Jain, N. & Pal, P. Ok. Detection of eye closing/opening from eog and its software in robotic arm management. Biocybern. Biomed. Eng. 40(1), 173–186 (2020).
Google Scholar
Daly, J. J. & Wolpaw, J. R. Mind-computer interfaces in neurological rehabilitation. Lancet Neurol. 7(11), 1032–1043 (2008).
Google Scholar
Li, H. et al. Combining movement-related cortical potentials and event-related desynchronization to review motion preparation and execution. Entrance. Neurol. 9822 (2018).
Google Scholar
Noureddin, B., Lawrence, P. D. & Birch, G. E. On-line removing of eye motion and blink eeg artifacts utilizing a high-speed eye tracker. IEEE Trans. Biomed. Eng. 59(8), 2103–2110 (2011).
Google Scholar
Belkacem, AN et al. Actual-time management of a online game utilizing eye actions and two temporal eeg sensors. Account Intel. Neuroscientists 20151 (2015).
Google Scholar
Millan, J. d. R. , Renkens , F. , Mouriño , J. & Gerstner , W. Non-invasive brain-actuated management of a cell robotic . In: Proceedings of the 18th Worldwide Joint Convention on Synthetic Intelligence (2003).
Rebsamen, B. et al. A mind managed wheelchair to navigate in acquainted environments. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 590–598 (2010).
Google Scholar
Ma, T et al. The hybrid bci system for motion management by combining motor imagery and transferring onset visible evoked potential. J. Neural Eng. 14(2), 026015 (2017).
Google Scholar
Li, Y., Pan, J., Wang, F. & Yu, Z. A hybrid bci system combining p300 and ssvep and its software to wheelchair management. IEEE Trans. Biomed. Eng. 60(11), 3156–3166 (2013).
Google Scholar
Hori, J., Sakano, Ok. & Saitoh, Y. Growth of a communication help system managed by eye actions and voluntary eye blink. IEICE Trans. Inf. Syst. 89(6), 1790–1797 (2006).
Google Scholar
Duguleana , M. & Mogan , G. Utilizing eye blinking for eog-based robotic management . In Doctoral Convention on Computing, Electrical and Industrial Methods (eds Black, M. & Mogan, G.) 343–350 (Springer, 2010).
Google Scholar
Chambayil, B., Singla, R. & Jha, R. Eeg eye blink classification utilizing neural community. Proc. World Congress Eng. 12–5 (2010).
Google Scholar
Rihana, S., Damien, P. & Moujaess, T. Eeg-eye blink detection system for mind pc interface. In Converging Medical and Engineering Analysis on Neurorehabilitation (eds Rihana, S. et al.) 603–608 (Springer, 2013).
Google Scholar
Janapati, R., Dalal, V., Govardhan, N. & Gupta, R. S. Overview on eeg-bci classification strategies developments. In IOP Convention Sequence: Supplies Science and Engineering Vol. 981 (ed. Janapati, R.) 032019 (IOP Publishing, 2020).
Google Scholar
Morshed, B. I. & Khan, A. A short assessment of mind sign monitoring applied sciences for bci functions: Challenges and prospects. J. Bioeng. Biomed. Sci. 4(1), 1 (2014).
Google Scholar
Rashid, M. et al. Present standing, challenges, and potential options of eeg-based brain-computer interface: a complete assessment. Entrance. Neurorobot. 251–35 (2020).
Ferguson, S. Temporal Lobe Epilepsy and the Thoughts-Mind Relationship: A New Perspective. 1–133 (Elsevier, 2006).
Google Scholar
Holm, A., Lukander, Ok., Korpela, J., Sallinen, M. & Müller, KM Estimating mind load from the eeg. TheScientificWorldJOURNAL 9639–651 (2009).
Google Scholar
Stuss, D. T. & Knight, R. T. Ideas of Frontal Lobe Operate. 1–765 (Oxford College Press, 2013).
Google Scholar
Onton, J., Delorme, A. & Makeig, S. Frontal midline eeg dynamics throughout working reminiscence. Neuroimage 27(2), 341–356 (2005).
Google Scholar
Chi, Y. M., Jung, T.-P. & Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological assessment. IEEE Rev. Biomed. Eng. 3106–119 (2010).
Google Scholar
Usakli, A. B. Enchancment of eeg sign acquisition: {An electrical} facet for state-of-the-art of entrance finish. Computational intelligence and neuroscience 20101–7 (2010).
Sovierzoski, M. A., Argoud, F. I. & de Azevedo, F. M. Figuring out eye blinks in eeg sign evaluation. In 2008 Worldwide Convention on Info Know-how and Purposes in Biomedicine (ed. Sovierzoski, M. A.) 406–409 (IEEE, 2008).
Google Scholar
Gupta, S. S. et al. Detecting eye actions in eeg for controlling units. In 2012 IEEE Worldwide Convention on Computational Intelligence and Cybernetics (CyberneticsCom) (ed. Gupta, S. S.) 69–73 (IEEE, 2012).
Google Scholar
Roy, R. N., Charbonnier, S. & Bonnet, S. Eye blink characterization from frontal eeg electrodes utilizing supply separation and sample recognition algorithms. Biomed. Sign Course of. Management 14256–264 (2014).
Google Scholar
Abo-Zahhad, M., Ahmed, S. M. & Abbas, S. N. A brand new eeg acquisition protocol for biometric identification utilizing eye blinking indicators. Int. J. Intell. Syst. Appl. 7(6), 48 (2015).
Google Scholar
Korovesis, N., Kandris, D., Koulouras, G. & Alexandridis, A. Robotic movement management through an eeg-based brain-computer interface by utilizing neural networks and alpha brainwaves. Electronics 8(12), 1387 (2019).
Google Scholar
Manoilov, P. Eeg eye-blinking artefacts energy spectrum evaluation. In: Proc. Int. Conf. Comput. Syst. TechnolVol. 52, pp. 3–5 (2006).
Kong, W. et al. Computerized and direct identification of blink elements from scalp eeg. Sensors 13(8), 10783–10801 (2013).
Google Scholar
Haak, M., Bos, S., Panic, S. & Rothkrantz, L. J. Detecting stress utilizing eye blinks and mind exercise from eeg indicators. Proc. 1st Driver Automobile Interplay Interface (DCII 2008) 3135–60 (2009).
Tran, D.-Ok., Nguyen, T.-H. & Nguyen, T.-N. Detection of eeg-based eye-blinks utilizing a thresholding algorithm. Eur. J.Eng. Technol. Res. 6(4), 6–12 (2021).
Google Scholar
Joyce, C. A., Gorodnitsky, I. F. & Kutas, M. Computerized removing of eye motion and blink artifacts from eeg knowledge utilizing blind part separation. Psychophysiology 41(2), 313–325 (2004).
Google Scholar
Stephygraph, L. R., Arunkumar, N. & Venkatraman, V. Wi-fi cell robotic management via human machine interface utilizing mind indicators. In 2015 Worldwide Convention on Good Applied sciences and Administration for Computing, Communication, Controls, Vitality and Supplies (ICSTM) (ed. Stephygraph, L. R.) 596–603 (IEEE, 2015).
Google Scholar
Cao, J. et al. Unsupervised eye blink artifact detection from eeg with gaussian combination mannequin. IEEE J. Biomed. Well being Inform. 25(8), 2895–2905 (2021).
Google Scholar
b Abd Rani, M. S., et al. Detection of eye blinks from eeg indicators for house lighting system activation. In: 2009 sixth Worldwide Symposium on Mechatronics and Its Purposes, pp. 1–4 (2009). IEEE
Iwasaki, M. et al. Results of eyelid closure, blinks, and eye actions on the electroencephalogram. Clin. Neurophysiol. 116(4), 878–885 (2005).
Google Scholar
Agarwal, M. & Sivakumar, R. Blink: A completely automated unsupervised algorithm for eye-blink detection in eeg indicators. In 2019 57th Annual Allerton Convention on Communication, Management, and Computing (Allerton) (eds Agarwal, M. & Sivakumar, R.) 1113–1121 (IEEE, 2019).
Google Scholar
Franceschi, P., Bertini, F., Braghin, F., Roveda, L., Pedrocchi, N. & Beschi, M. Predicting human movement intention for first assistive management. arXiv preprint arXiv:2307.10743 (2023).