Olivecrona , M. , Blaschke , T. , Engkvist , O. & Chen , H. Molecular de-novo design via deep reinforcement studying . J. Cheminform. 948 (2017).
Jeon, W. & Kim, D. Autonomous molecule technology utilizing reinforcement studying and docking to develop potential novel inhibitors. Sci. Rep. 1022104 (2020).
Reker, D. & Schneider, G. Lively-learning methods in computer-assisted drug discovery. Drug Discov. Right now 20458–465 (2015).
Google Scholar
De Cao, N. & Kipf, T. MolGAN: an implicit generative mannequin for small molecular graphs. Preprint at arXiv https://doi.org/10.48550/arXiv.1805.11973 (2018).
Guo, M. et al. Information-efficient graph grammar studying for molecular technology. Preprint at arXiv https://doi.org/10.48550/arXiv.2203.08031 (2022).
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. thirty fourth Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 70 (eds Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017).
Unke, O. T. & Meuwly, M. PhysNet: a neural community for predicting energies, forces, dipole moments, and partial costs. J. Chem. Principle Comput. 153678–3693 (2019).
Google Scholar
Schütt , KT , Sauceda , HE , Kindermans , P.-J. , Tkatchenko , A. & Muller , Ok.-R. SchNet—a deep studying structure for molecules and supplies. J. Chem. Phys. 148241722 (2018).
Google Scholar
Klicpera, J., Groß, J. & Günnemann, S. Directional message passing for molecular graphs. In Worldwide Convention on Studying Representations Vol. 8 (2020).
Klicpera, J., Giri, S., Margraf, J. T. & Günnemann, S. Quick and uncertainty-aware directional message passing for non-equilibrium molecules. Preprint at https://arxiv.org/abs/2011.14115 (2020).
Choudhary, Ok. & DeCost, B. Atomistic line graph neural community for improved supplies property predictions. npj Comput. Mom 7185 (2021).
Schütt, Ok., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. thirty eighth Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 139 (eds Meila, M. & Zhang, T.) 9377–9388 (PMLR, 2021).
Lim, J. et al. Predicting drug–goal interplay utilizing a novel graph neural community with 3D structure-embedded graph illustration. J. Chem. Inf. Mannequin. 593981–3988 (2019).
Google Scholar
Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction utilizing graph convolutional networks. Adv. Neural Inf. Course of. Syst. 306530–6539 (2017).
Tang, B. et al. A self-attention primarily based message passing neural community for predicting molecular lipophilicity and aqueous solubility. J. Cheminform. 1215 (2020).
Ramakrishnan, R., Dral, P. O., Rupp, M. & Von Lilienfeld, O. A. Quantum chemistry constructions and properties of 134 kilo molecules. Sci. Information 1140022 (2014).
Becke, A. D. Density-functional thermochemistry. I. The impact of the exchange-only gradient correction. J. Chem. Phys. 962155–2160 (1992).
Google Scholar
Lee, C., Yang, W. & Parr, R. G. Improvement of the Colle–Salvetti correlation-energy components right into a practical of the electron density. Phys. Rev. B 37785 (1988).
Google Scholar
Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital strategies. IX. An prolonged Gaussian-type foundation for molecular-orbital research of natural molecules. J. Chem. Phys. 54724–728 (1971).
Google Scholar
Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital strategies 25. Supplementary features for Gaussian foundation units. J. Chem. Phys. 803265–3269 (1984).
Google Scholar
Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital strategies. XII. Additional extensions of Gaussian-type foundation units to be used in molecular orbital research of natural molecules. J. Chem. Phys. 562257–2261 (1972).
Google Scholar
Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital strategies. XX. A foundation set for correlated wave features. J. Chem. Phys. 72650–654 (1980).
Google Scholar
Halgren, T. A. MMFF VI. MMFF94s possibility for vitality minimization research. J. Comput. Chem. 20720–729 (1999).
Google Scholar
Lemm, D., von Rudorff, G. F. & von Lilienfeld, O. A. Machine studying primarily based energy-free construction predictions of molecules, transition states, and solids. Nat. Widespread. 124468 (2021).
Google Scholar
Xu, M. et al. GeoDiff: a geometrical diffusion mannequin for molecular conformation technology. In Worldwide Convention on Studying Representations Vol. 10 (2022).
Luo, S., Shi, C., Xu, M. & Tang, J. Predicting molecular conformation through dynamic graph rating matching. Adv. Neural Inf. Course of. Syst. 3419784–19795 (2021).
Google Scholar
Zhu, J. et al. Direct molecular conformation technology. Transactions on Machine Studying Analysis (2022).
Lemm, D., von Rudorff, G. F. & von Lilienfeld, O. A. Machine studying primarily based energy-free construction predictions of molecules, transition states, and solids. Nat. Widespread. 124468 (2021).
Mansimov, E., Mahmood, O., Kang, S. & Cho, Ok. Molecular geometry prediction utilizing a deep generative graph neural community. Sci. Rep. 920381 (2019).
Isert, C., Atz, Ok., Jiménez-Luna, J. & Schneider, G. QMugs, quantum mechanical properties of drug-like molecules. Sci. Information 9273 (2022).
Google Scholar
Ganin, Y. & Lempitsky, V. Unsupervised area adaptation by backpropagation. In Proc. thirty second Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 37 (eds Bach, F. & Blei, D.) 1180–1189 (PMLR, 2015).
Chen, Z., Li, X. & Bruna, J. Supervised neighborhood detection with line graph neural networks. In Worldwide Convention on Studying Representations Vol. 5 (2017).
Thakoor, S. et al. Giant-scale illustration studying on graphs through bootstrapping. In Worldwide Convention on Studying Representations Vol. 10 (2022).
Xu, M., Luo, S., Bengio, Y., Peng, J. & Tang, J. Studying neural generative dynamics for molecular conformation technology. In Worldwide Convention on Studying Representations Vol. 9 (2021).
Van der Maaten, L. & Hinton, G. Visualizing knowledge utilizing t-SNE. J. Mach. Study. Res. 92579–2605 (2008).
Weininger, D. SMILES, a chemical language and knowledge system. 1. Introduction to methodology and encoding guidelines. J. Chem. Inf. Comput. Sci. 2831–36 (1988).
Google Scholar
Weininger, D., Weininger, A. & Weininger, J. L. SMILES. 2. Algorithm for technology of distinctive smiles notation. J. Chem. Inf. Comput. Sci. 2997–101 (1989).
Google Scholar
Riniker, S. & Landrum, G. A. Higher knowledgeable distance geometry: utilizing what we all know to enhance conformation technology. J. Chem. Inf. Mannequin. 552562–2574 (2015).
Google Scholar
Landrum, G. RDKit: open-source cheminformatics. http://www.rdkit.org (2006).
Hsu, T. et al. Environment friendly and interpretable graph community illustration for angle-dependent properties utilized to optical spectroscopy. npj Comput. Mom 8151 (2022).
Kaundinya, P. R., Choudhary, Ok. & Kalidindi, S. R. Prediction of the electron density of states for crystalline compounds with atomistic line graph neural networks (ALIGNN). COME ON 741395–1405 (2022).
Fang, X. et al. Geometry-enhanced molecular illustration studying for property prediction. Nat. Mach. Intel. 4127–134 (2022).
Google Scholar
Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an correct and interpretable prediction of fabric properties. Phys. Rev. Lett. 120145301 (2018).
Google Scholar
Choudhary, Ok. et al. The joint automated repository for numerous built-in simulations (JARVIS) for data-driven supplies design. npj Comput. Mom 6173 (2020).
Satorras, VG, Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In Proc. thirty eighth Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 139 (eds Meila, M. & Zhang, T.) 9323–9332 (PMLR, 2021).
Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and correct interatomic potentials. Nat. Widespread. 132453 (2022).
Solar, Q. et al. PySCF: the Python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8e1340 (2018).
Google Scholar
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xtTB—an correct and broadly parametrized self-consistent tight-binding quantum chemical technique with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Principle Comput. 151652–1671 (2019).
Google Scholar
Larsen, A. H. et al. The atomic simulation atmosphere—a Python library for working with atoms. J. Phys. Condensed Matter 29273002 (2017).
Google Scholar
Paszke, A. et al. PyTorch: an crucial type, high-performance deep studying library. Adv. Neural Inf. Course of. Syst. 328026–8037 (2019).
Wang, M. Y. Deep graph library: in the direction of environment friendly and scalable deep studying on graphs. In Worldwide Convention on Studying Representations Vol. 7 (2019).
Park, Y. J., Kim, H., Jo, J. & Yoon, S. sharedata-to-reproduce-lacl. figshare https://doi.org/10.6084/m9.figshare.24445129 (2023).
Park, Y. J., Kim, H., Jo, J. & Yoon, S. LACL. figshare https://doi.org/10.6084/m9.figshare.24456802 (2023).