Close Menu
  • Graphic cards
  • Laptops
  • Monitors
  • Motherboard
  • Processors
  • Smartphones
  • Smartwatches
  • Solid state drives
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
Dutchieetech
Subscribe Now
  • Graphic cards
  • Laptops
  • Monitors
  • Motherboard
  • Processors
  • Smartphones
  • Smartwatches
  • Solid state drives
Dutchieetech
Processors

Deep contrastive studying of molecular conformation for environment friendly property prediction

dutchieetech.comBy dutchieetech.com4 December 2023No Comments7 Mins Read

  • Olivecrona , M. , Blaschke , T. , Engkvist , O. & Chen , H. Molecular de-novo design via deep reinforcement studying . J. Cheminform. 948 (2017).

  • Jeon, W. & Kim, D. Autonomous molecule technology utilizing reinforcement studying and docking to develop potential novel inhibitors. Sci. Rep. 1022104 (2020).

  • Reker, D. & Schneider, G. Lively-learning methods in computer-assisted drug discovery. Drug Discov. Right now 20458–465 (2015).

    Article 

    Google Scholar

  • De Cao, N. & Kipf, T. MolGAN: an implicit generative mannequin for small molecular graphs. Preprint at arXiv https://doi.org/10.48550/arXiv.1805.11973 (2018).

  • Guo, M. et al. Information-efficient graph grammar studying for molecular technology. Preprint at arXiv https://doi.org/10.48550/arXiv.2203.08031 (2022).

  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. thirty fourth Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 70 (eds Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017).

  • Unke, O. T. & Meuwly, M. PhysNet: a neural community for predicting energies, forces, dipole moments, and partial costs. J. Chem. Principle Comput. 153678–3693 (2019).

    Article 

    Google Scholar

  • Schütt , KT , Sauceda , HE , Kindermans , P.-J. , Tkatchenko , A. & Muller , Ok.-R. SchNet—a deep studying structure for molecules and supplies. J. Chem. Phys. 148241722 (2018).

    Article 

    Google Scholar

  • Klicpera, J., Groß, J. & Günnemann, S. Directional message passing for molecular graphs. In Worldwide Convention on Studying Representations Vol. 8 (2020).

  • Klicpera, J., Giri, S., Margraf, J. T. & Günnemann, S. Quick and uncertainty-aware directional message passing for non-equilibrium molecules. Preprint at https://arxiv.org/abs/2011.14115 (2020).

  • Choudhary, Ok. & DeCost, B. Atomistic line graph neural community for improved supplies property predictions. npj Comput. Mom 7185 (2021).

  • Schütt, Ok., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. thirty eighth Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 139 (eds Meila, M. & Zhang, T.) 9377–9388 (PMLR, 2021).

  • Lim, J. et al. Predicting drug–goal interplay utilizing a novel graph neural community with 3D structure-embedded graph illustration. J. Chem. Inf. Mannequin. 593981–3988 (2019).

    Article 

    Google Scholar

  • Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction utilizing graph convolutional networks. Adv. Neural Inf. Course of. Syst. 306530–6539 (2017).

  • Tang, B. et al. A self-attention primarily based message passing neural community for predicting molecular lipophilicity and aqueous solubility. J. Cheminform. 1215 (2020).

  • Ramakrishnan, R., Dral, P. O., Rupp, M. & Von Lilienfeld, O. A. Quantum chemistry constructions and properties of 134 kilo molecules. Sci. Information 1140022 (2014).

  • Becke, A. D. Density-functional thermochemistry. I. The impact of the exchange-only gradient correction. J. Chem. Phys. 962155–2160 (1992).

    Article 

    Google Scholar

  • Lee, C., Yang, W. & Parr, R. G. Improvement of the Colle–Salvetti correlation-energy components right into a practical of the electron density. Phys. Rev. B 37785 (1988).

    Article 

    Google Scholar

  • Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital strategies. IX. An prolonged Gaussian-type foundation for molecular-orbital research of natural molecules. J. Chem. Phys. 54724–728 (1971).

    Article 

    Google Scholar

  • Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital strategies 25. Supplementary features for Gaussian foundation units. J. Chem. Phys. 803265–3269 (1984).

    Article 

    Google Scholar

  • Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital strategies. XII. Additional extensions of Gaussian-type foundation units to be used in molecular orbital research of natural molecules. J. Chem. Phys. 562257–2261 (1972).

    Article 

    Google Scholar

  • Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital strategies. XX. A foundation set for correlated wave features. J. Chem. Phys. 72650–654 (1980).

    Article 

    Google Scholar

  • Halgren, T. A. MMFF VI. MMFF94s possibility for vitality minimization research. J. Comput. Chem. 20720–729 (1999).

    Article 

    Google Scholar

  • Lemm, D., von Rudorff, G. F. & von Lilienfeld, O. A. Machine studying primarily based energy-free construction predictions of molecules, transition states, and solids. Nat. Widespread. 124468 (2021).

    Article 

    Google Scholar

  • Xu, M. et al. GeoDiff: a geometrical diffusion mannequin for molecular conformation technology. In Worldwide Convention on Studying Representations Vol. 10 (2022).

  • Luo, S., Shi, C., Xu, M. & Tang, J. Predicting molecular conformation through dynamic graph rating matching. Adv. Neural Inf. Course of. Syst. 3419784–19795 (2021).

    Google Scholar

  • Zhu, J. et al. Direct molecular conformation technology. Transactions on Machine Studying Analysis (2022).

  • Lemm, D., von Rudorff, G. F. & von Lilienfeld, O. A. Machine studying primarily based energy-free construction predictions of molecules, transition states, and solids. Nat. Widespread. 124468 (2021).

  • Mansimov, E., Mahmood, O., Kang, S. & Cho, Ok. Molecular geometry prediction utilizing a deep generative graph neural community. Sci. Rep. 920381 (2019).

  • Isert, C., Atz, Ok., Jiménez-Luna, J. & Schneider, G. QMugs, quantum mechanical properties of drug-like molecules. Sci. Information 9273 (2022).

    Article 

    Google Scholar

  • Ganin, Y. & Lempitsky, V. Unsupervised area adaptation by backpropagation. In Proc. thirty second Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 37 (eds Bach, F. & Blei, D.) 1180–1189 (PMLR, 2015).

  • Chen, Z., Li, X. & Bruna, J. Supervised neighborhood detection with line graph neural networks. In Worldwide Convention on Studying Representations Vol. 5 (2017).

  • Thakoor, S. et al. Giant-scale illustration studying on graphs through bootstrapping. In Worldwide Convention on Studying Representations Vol. 10 (2022).

  • Xu, M., Luo, S., Bengio, Y., Peng, J. & Tang, J. Studying neural generative dynamics for molecular conformation technology. In Worldwide Convention on Studying Representations Vol. 9 (2021).

  • Van der Maaten, L. & Hinton, G. Visualizing knowledge utilizing t-SNE. J. Mach. Study. Res. 92579–2605 (2008).

  • Weininger, D. SMILES, a chemical language and knowledge system. 1. Introduction to methodology and encoding guidelines. J. Chem. Inf. Comput. Sci. 2831–36 (1988).

    Article 

    Google Scholar

  • Weininger, D., Weininger, A. & Weininger, J. L. SMILES. 2. Algorithm for technology of distinctive smiles notation. J. Chem. Inf. Comput. Sci. 2997–101 (1989).

    Article 
    MATH 

    Google Scholar

  • Riniker, S. & Landrum, G. A. Higher knowledgeable distance geometry: utilizing what we all know to enhance conformation technology. J. Chem. Inf. Mannequin. 552562–2574 (2015).

    Article 

    Google Scholar

  • Landrum, G. RDKit: open-source cheminformatics. http://www.rdkit.org (2006).

  • Hsu, T. et al. Environment friendly and interpretable graph community illustration for angle-dependent properties utilized to optical spectroscopy. npj Comput. Mom 8151 (2022).

  • Kaundinya, P. R., Choudhary, Ok. & Kalidindi, S. R. Prediction of the electron density of states for crystalline compounds with atomistic line graph neural networks (ALIGNN). COME ON 741395–1405 (2022).

  • Fang, X. et al. Geometry-enhanced molecular illustration studying for property prediction. Nat. Mach. Intel. 4127–134 (2022).

    Article 

    Google Scholar

  • Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an correct and interpretable prediction of fabric properties. Phys. Rev. Lett. 120145301 (2018).

    Article 

    Google Scholar

  • Choudhary, Ok. et al. The joint automated repository for numerous built-in simulations (JARVIS) for data-driven supplies design. npj Comput. Mom 6173 (2020).

  • Satorras, VG, Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In Proc. thirty eighth Worldwide Convention on Machine Studying, Proc. Machine Studying Analysis Vol. 139 (eds Meila, M. & Zhang, T.) 9323–9332 (PMLR, 2021).

  • Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and correct interatomic potentials. Nat. Widespread. 132453 (2022).

  • Solar, Q. et al. PySCF: the Python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8e1340 (2018).

    Article 

    Google Scholar

  • Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xtTB—an correct and broadly parametrized self-consistent tight-binding quantum chemical technique with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Principle Comput. 151652–1671 (2019).

    Article 

    Google Scholar

  • Larsen, A. H. et al. The atomic simulation atmosphere—a Python library for working with atoms. J. Phys. Condensed Matter 29273002 (2017).

    Article 

    Google Scholar

  • Paszke, A. et al. PyTorch: an crucial type, high-performance deep studying library. Adv. Neural Inf. Course of. Syst. 328026–8037 (2019).

  • Wang, M. Y. Deep graph library: in the direction of environment friendly and scalable deep studying on graphs. In Worldwide Convention on Studying Representations Vol. 7 (2019).

  • Park, Y. J., Kim, H., Jo, J. & Yoon, S. sharedata-to-reproduce-lacl. figshare https://doi.org/10.6084/m9.figshare.24445129 (2023).

  • Park, Y. J., Kim, H., Jo, J. & Yoon, S. LACL. figshare https://doi.org/10.6084/m9.figshare.24456802 (2023).

  • Source link

    dutchieetech.com
    • Website

    Related Posts

    Intel simply up to date us on sport crashes, and it’s not trying good

    21 June 2024

    Intel Publishes Steerage For Crashing Core I9 Processors, ETVB Bugfix On The Approach – Pokde.Internet

    21 June 2024

    Linux 6.10 Fixes AMD Zen 5 CPU Frequency Reporting With cpupower

    6 June 2024

    Intel Unveils Core Extremely Processor with Built-in AI Capabilities

    6 June 2024

    AORUS Tachyon, AORUS Master, AORUS Ultra, AORUS Elite, AERO G

    6 June 2024

    Intel particulars its Lunar Lake structure with spectacular enhancements

    4 June 2024
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Legal Pages
    • Disclaimer
    • Privacy Policy
    • About Us
    • Contact Us

    Type above and press Enter to search. Press Esc to cancel.